

Selected Operators and Their Precedence
(See Appendix B for the complete list.)

[] Array element access
++ -- ! Increment, decrement, Boolean not
* / % Multiplication, division, remainder
+ - Addition, subtraction
< <= > >= Comparisons
== != Equal, not equal
&& Boolean and
|| Boolean or
= Assignment

Conditional Statement

if (floor >= 13)
{
 actualFloor = floor - 1;
}
else if (floor >= 0)
{
 actualFloor = floor;
}
else
{
 System.out.println("Floor negative");
}

Condition

Executed when condition is true

Second condition (optional)

Executed when
all conditions are
false (optional)

Class Declaration

public class CashRegister
{
 private int itemCount;
 private double totalPrice;

 public void addItem(double price)
 {
 itemCount++;
 totalPrice = totalPrice + price;
 }
 . . .
}

Method

Instance variables

do
{
 System.out.print("Enter a positive integer: ");
 input = in.nextInt();
}
while (input <= 0);

for (double value : values)
{
 sum = sum + value;
}

An array or collection

Executed for each element

Loop body executed
at least once

Set to a new element in each iteration

Executed while
condition is true

Condition

Initialization Condition Update

Loop Statements

while (balance < TARGET)
{
 year++;
 balance = balance * (1 + rate / 100);
}

for (int i = 0; i < 10; i++)
{
 System.out.println(i);
}

String Operations

String s = "Hello";
int n = s.length(); // 5
char ch = s.charAt(1); // 'e'
String t = s.substring(1, 4); // "ell"
String u = s.toUpperCase(); // "HELLO"
if (u.equals("HELLO")) ... // Use equals, not ==
for (int i = 0; i < s.length(); i++)
{
 char ch = s.charAt(i);
 Process ch
}

Mathematical Operations

Math.pow(x, y) Raising to a power xy
Math.sqrt(x) Square root x
Math.log10(x) Decimal log log10(x)
Math.abs(x) Absolute value |x|
Math.sin(x)

Math.cos(x) Sine, cosine, tangent of x (x in radians)
Math.tan(x)

Variable and Constant Declarations

int cansPerPack = 6;

final double CAN_VOLUME = 0.335;

Type Name Initial value

Parameter
type and name

Exits method and
returns result.

Return typeModifiers

Method Declaration

public static double cubeVolume(double sideLength)
{
 double volume = sideLength * sideLength * sideLength;
 return volume;
}

Input

Scanner in = new Scanner(System.in);
 // Can also use new Scanner(new File("input.txt"));

int n = in.nextInt();
double x = in.nextDouble();
String word = in.next();
String line = in.nextLine();

while (in.hasNextDouble())
{
 double x = in.nextDouble();
 Process x
}

Linked Lists, Sets, and Iterators

LinkedList<String> names = new LinkedList<String>();
names.add("Bob"); // Adds at end

ListIterator<String> iter = names.listIterator();
iter.add("Ann"); // Adds before current position

String name = iter.next(); // Returns "Ann"
iter.remove(); // Removes "Ann"

Set<String> names = new HashSet<String>();
names.add("Ann"); // Adds to set if not present
names.remove("Bob"); // Removes if present

Iterator<String> iter = names.iterator();
while (iter.hasNext())
{
 Process iter.next()
}

Arrays

int[] numbers = new int[5];
int[] squares = { 0, 1, 4, 9, 16 };
int[][] magicSquare =
 {
 { 16, 3, 2, 13},
 { 5, 10, 11, 8},
 { 9, 6, 7, 12},
 { 4, 15, 14, 1}
 };

for (int i = 0; i < numbers.length; i++)
{
 numbers[i] = i * i;
}

for (int element : numbers)
{
 Process element
}

System.out.println(Arrays.toString(numbers));
 // Prints [0, 1, 4, 9, 16]

 Element
Element type type Length

All elements are zero.

Maps

Map<String, Integer> scores = new HashMap<String, Integer>();

scores.put("Bob", 10);
Integer score = scores.get("Bob");

for (String key : scores.keySet())
{
 Process key and scores.get(key)
}

Key Value
type type

Returns null if key not present

Output

System.out.print("Enter a value: ");

System.out.println("Volume: " + volume);

System.out.printf("%-10s %10d %10.2f", name, qty, price);

PrintWriter out = new PrintWriter("output.txt");

out.close();

Left-justified string Integer Floating-point number

Field width Precision

Does not advance to new line.

Use + to concatenate values.

Remember to close output file.

Use print/println/printf
to write output to file.

Array Lists

ArrayList<String> names = new ArrayList<String>();

names.add("Ann");
names.add("Cindy"); // [Ann, Cindy], names.size() is now 2

names.add(1, "Bob"); // [Ann, Bob, Cindy]
names.remove(2); // [Ann, Bob]
names.set(1, "Bill"); // [Ann, Bill]

String name = names.get(0); // Gets "Ann"
System.out.println(names); // Prints [Ann, Bill]

Element type

Use wrapper type,
Integer, Double, etc.,

for primitive types.

Add elements to the end

Initially empty

bj5jc7_insidecovers_8x10.indd 1 10/15/12 12:05 PM

Big Java
Early Objects
 Cay Horstmann

San Jose State University

© S Sailer/A Sailer/Age Fotostock America, Inc.

© Frans Lemmens/SuperStock

© FLPA/John Holmes/Age Fotostock America, Inc.

Fifth Edition

bj5_fm_05.indd 1 10/18/12 3:24 PM

PUBLISHER	 Don	Fowley
EXECUTIVE	EDITOR	 Beth	Lang	Golub
CONTENT	MANAGER	 Kevin	Holm
EDITORIAL	PROGRAM	ASSISTANT	 Katherine	Willis
EXECUTIVE	MARKETING	MANAGER	 Christopher	Ruel
CREATIVE	DIRECTOR	 Harry	Nolan
SENIOR	DESIGNER	 Madelyn	Lesure
SENIOR	PHOTO	EDITOR	 Lisa	Gee
SENIOR	CONTENT	EDITOR	 Wendy	Ashenberg
SENIOR	PRODUCT	DESIGNER	 Jenny	Welter
EDITORIAL	OPERATIONS	MANAGER	 Melissa	Edwards
PRODUCTION	EDITOR	 Tim	Lindner
PRODUCTION	MANAGEMENT	SERVICES	 Cindy	Johnson
COVER	PHOTOS		 (bird)	©	FLPA/John	Holmes/Age	Fotostock	America,	

Inc.;	(monkey)	©	S	Sailer/A	Sailer/Age	Fotostock	
America,	Inc.;	(tiger)	©	Frans	Lemmens/SuperStock

INTERIOR	DESIGN	 Maureen	Eide

This	book	was	set	in	Stempel	Garamond	by	Publishing	Services,	and	printed	and	bound	by	R.R.	Donnelley	&	
Sons	Company.	

This	book	is	printed	on	acid-free	paper.			∞	

Founded	in	1807,	John	Wiley	&	Sons,	Inc.	has	been	a	valued	source	of	knowledge	and	understanding	for	more	than	
200	years,	helping	people	around	the	world	meet	their	needs	and	fulfill	their	aspirations.	Our	company	is	built	on	
a	foundation	of	principles	that	include	responsibility	to	the	communities	we	serve	and	where	we	live	and	work.	
In	2008,	we	launched	a	Corporate	Citizenship	Initiative,	a	global	effort	to	address	the	environmental,	social,	eco-
nomic,	and	ethical	challenges	we	face	in	our	business.	Among	the	issues	we	are	addressing	are	carbon	impact,	paper	
specifications	and	procurement,	ethical	conduct	within	our	business	and	among	our	vendors,	and	community	and	
charitable	support.	For	more	information,	please	visit	our	website:	www.wiley.com/go/citizenship.

Copyright	©	2014	John	Wiley	&	Sons,	Inc.	All	rights	reserved.	No	part	of	this	publication	may	be	reproduced,	
stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by	any	means,	electronic,	mechanical,	photocopy-
ing,	recording,	scanning	or	otherwise,	except	as	permitted	under	Sections	107	or	108	of	the	1976	United	States	
Copyright	Act,	without	either	the	prior	written	permission	of	the	Publisher,	or	authorization	through	payment	
of	the	appropriate	per-copy	fee	to	the	Copyright	Clearance	Center,	Inc.,	222	Rosewood	Drive,	Danvers,	MA	
01923	(Web	site:	www.copyright.com).	Requests	to	the	Publisher	for	permission	should	be	addressed	to	the	
Permissions	Department,	John	Wiley	&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ	07030-5774,	(201)	748-6011,	
fax	(201)	748-6008,	or	online	at:	www.wiley.com/go/permissions.

Evaluation	copies	are	provided	to	qualified	academics	and	professionals	for	review	purposes	only,	for	use	in	
their	courses	during	the	next	academic	year.	These	copies	are	licensed	and	may	not	be	sold	or	transferred	to	a	
third	party.	Upon	completion	of	the	review	period,	please	return	the	evaluation	copy	to	Wiley.	Return	instruc-
tions	and	a	free	of	charge	return	shipping	label	are	available	at:	www.wiley.com/go/returnlabel.	If	you	have	
chosen	to	adopt	this	textbook	for	use	in	your	course,	please	accept	this	book	as	your	complimentary	desk	copy.	
Outside	of	the	United	States,	please	contact	your	local	sales	representative.

ISBN	978-1-118-43111-5	(Main	Book)
ISBN	978-1-118-42297-7	(Binder-Ready	Version)

Printed	in	the	United	States	of	America

10	9	8	7	6	5	4	3	2	1

bj5_fm_06.indd 2 11/6/12 9:19 PM

http://www.wiley.com/go/citizenship
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/returnlabel

Preface

iii

This book is an introduction to Java and computer programming that focuses on the
essentials—and on effective learning. The book is designed to serve a wide range of
student interests and abilities and is suitable for a first course in programming for
computer scientists, engineers, and students in other disciplines. No prior program-
ming experience is required, and only a modest amount of high school algebra is
needed. Here are the key features of this book:

Start objects early, teach object orientation gradually.
In Chapter 2, students learn how to use objects and classes from the standard library.
Chapter 3 shows the mechanics of implementing classes from a given specification.
Students then use simple objects as they master branches, loops, and arrays. Object-
oriented design starts in Chapter 8. This gradual approach allows students to use
objects throughout their study of the core algorithmic topics, without teaching bad
habits that must be un-learned later.

Guidance and worked examples help students succeed.
Beginning programmers often ask “How do I start? Now what do I do?” Of course,
an activity as complex as programming cannot be reduced to cookbook-style instruc-
tions. However, step-by-step guidance is immensely helpful for building confidence
and providing an outline for the task at hand. “Problem Solving” sections stress the
importance of design and planning. “How To” guides help students with common
programming tasks. Additional Worked Examples are available online.

Practice makes perfect.
Of course, programming students need to be able to implement nontrivial programs,
but they first need to have the confidence that they can succeed. This book contains
a substantial number of self-check questions at the end of each section. “Practice It”
pointers suggest exercises to try after each section. And additional practice opportu-
nities, including lab exercises and skill-oriented multiple-choice questions are avail-
able online.

A visual approach motivates the reader and eases navigation.
Photographs present visual analogies that explain the
nature and behavior of computer concepts. Step-by-
step figures illustrate complex program operations.
Syntax boxes and example tables present a variety
of typical and special cases in a compact format. It
is easy to get the “lay of the land” by browsing the
visuals, before focusing on the textual material.

Focus on the essentials while being
technically accurate.
An encyclopedic coverage is not helpful for a begin-
ning programmer, but neither is the opposite—
reducing the material to a list of simplistic bullet points. In this book, the essentials are
presented in digestible chunks, with separate notes that go deeper into good practices

© Terraxplorer/iStockphoto.

Visual features help the reader
with navigation.

bj5_fm_06.indd 3 10/25/12 9:53 AM

iv  Preface 

or language features when the reader is ready for the additional information. You will
not find artificial over-simplifications that give an illusion of knowledge.

Reinforce sound engineering practices.
A multitude of useful tips on software quality and common errors encourage the
development of good programming habits. The optional testing track focuses on
test-driven development, encouraging students to test their programs systematically.

Provide an optional graphics track.
Graphical shapes are splendid examples of objects. Many students enjoy writing pro-
grams that create drawings or use graphical user interfaces. If desired, these topics can
be integrated into the course by using the materials at the end of Chapters 2, 3, and 10.

New to This edition
Problem Solving Strategies
This edition adds practical, step-by-step illustrations of techniques that can help stu-
dents devise and evaluate solutions to programming problems. Introduced where
they are most relevant, these strategies address barriers to success for many students.
Strategies included are:

• Algorithm Design (with pseudocode)
• Tracing Objects
• First Do It By Hand (doing sample

calculations by hand)
• Flowcharts
• Selecting Test Cases
• Hand-Tracing
• Storyboards

• Adapting Algorithms
• Discovering Algorithms by

Manipulating Physical Objects
• Patterns for Object Data
• Thinking Recursively
• Estimating the Running Time of

an Algorithm

Optional Science and Business exercises
End-of-chapter exercises have been enhanced with problems from scientific and
business domains. Designed to engage students, the exercises illustrate the value of
programming in applied fields.

New and reorganized Topics
All chapters were revised and enhanced to respond to user feedback and improve the
flow of topics. Loop algorithms are now introduced explicitly in Chapter 6. Addi-
tional array algorithms are presented in Chapter 7 and incorporated into the prob-
lem-solving sections. Chapter 8 is more clearly focused on the design of a single class,
whereas Chapter 12 deals with relationships between classes. The coverage of data
structures has been completely reorganized. Chapter 15 covers the use of existing
data structures. The implementation of linked lists and stacks is now in Chapter 16,
and a greatly enhanced Chapter 17 covers binary search trees, red-black trees, and
trees whose nodes have more than two children. New example tables, photographs,
and exercises appear throughout the book.

bj5_fm_06.indd 4 10/25/12 9:53 AM

Preface  v

a Tour of the Book
The book can be naturally grouped into four parts, as illustrated by Figure 1. The
organization of chapters offers the same flexibility as the previous edition; dependen-
cies among the chapters are also shown in the figure.

Figure 1  
chapter  
Dependencies

20. Streams and
Binary I/O

9. Inheritance

21.
Multithreading 10. Interfaces

23. Relational
Databases

13. Recursion

14. Sorting
and Searching

15. The Java
Collections
Framework

16. Basic
Data Structures

18. Generic
Classes

22. Internet
Networking

24. XML

25. Web
Applications

6. Iteration

8. Designing
Classes

17. Tree
Structures

Fundamentals

Object-Oriented Design

Data Structures & Algorithms

Applied Topics

Online Chapters

19. Graphical
User Interfaces

2. Using Objects

3. Implementing
Classes

4. Fundamental
Data Types

5. Decisions

6. Loops

7. Arrays
and Array Lists

11. Input/Output
and Exception

Handling

Sections 11.1 and 11.2
(text file processing) can be

covered with Chapter 6.

1. Introduction

12. Object-
Oriented Design

bj5_fm_05.indd 5 10/18/12 3:25 PM

vi  Preface 

Part A: Fundamentals (Chapters 1–7)
Chapter 1 contains a brief introduction to computer science and Java programming.
Chapter 2 shows how to manipulate objects of predefined classes. In Chapter 3,
you will build your own simple classes from given specifications. Fundamental data
types, branches, loops, and arrays are covered in Chapters 4–7.

Part B: Object-Oriented Design (Chapters 8–12)
Chapter 8 takes up the subject of class design in a systematic fashion, and it intro-
duces a very simple subset of the UML notation. The discussion of polymorphism
and inheritance is split into two chapters. Chapter 9 covers inheritance and polymor-
phism, whereas Chapter 10 covers interfaces. Exception handling and basic file input/
output are covered in Chapter 11. The exception hierarchy gives a useful example for
inheritance. Chapter 12 contains an introduction to object-oriented design, including
two significant case studies.

Part C: Data Structures and Algorithms (Chapters 13–18)
Chapters 13 through 18 contain an introduction to algorithms and data structures,
covering recursion, sorting and searching, linked lists, binary trees, and hash tables.
These topics may be outside the scope of a one-semester course, but can be covered
as desired after Chapter 7 (see Figure 1). Recursion, in Chapter 13, starts with simple
examples and progresses to meaningful applications that would be difficult to imple-
ment iteratively. Chapter 14 covers quadratic sorting algorithms as well as merge sort,
with an informal introduction to big-Oh notation. Each data structure is presented
in the context of the standard Java collections library. You will learn the essential
abstractions of the standard library (such as iterators, sets, and maps) as well as the
performance characteristics of the various collections. Chapter 18 introduces Java
generics. This chapter is suitable for advanced students who want to implement their
own generic classes and methods.

Part D: Applied Topics (Chapters 19–25)
Chapters 19 through 25 cover Java programming techniques that definitely go
beyond a first course in Java (21–25 are on the book’s companion site). Although, as
already mentioned, a comprehensive coverage of the Java library would span many
volumes, many instructors prefer that a textbook should give students additional
reference material valuable beyond their first course. Some institutions also teach a
second-semester course that covers more practical programming aspects such as data-
base and network programming, rather than the more traditional in-depth material
on data structures and algorithms. This book can be used in a two-semester course
to give students an introduction to programming fundamentals and broad coverage
of applications. Alternatively, the material in the final chapters can be useful for stu-
dent projects. The applied topics include graphical user-interface design, advanced
file handling, multithreading, and those technologies that are of particular interest to
server-side programming: networking, databases, XML, and web applications. The
Internet has made it possible to deploy many useful applications on servers, often
accessed by nothing more than a browser. This server-centric approach to application
development was in part made possible by the Java language and libraries, and today,
much of the industrial use of Java is in server-side programming.

bj5_fm_06.indd 6 11/6/12 9:18 PM

Preface  vii

Appendices
Many instructors find it highly beneficial to require a consistent style for all assign-
ments. If the style guide in Appendix I conflicts with instructor sentiment or local
customs, however, it is available in electronic form so that it can be modified.

A. The Basic Latin and Latin-1 Subsets
of Unicode

B. Java Operator Summary
C. Java Reserved Word Summary
D. The Java Library
E.  Java Syntax Summary

F.  Tool Summary
G. Number Systems
H. UML Summary
I.  Java Language Coding Guidelines
J.  HTML Summary

Custom Book and eBook Options
Big Java may be ordered as a custom print or eBook that includes your choice of
chapters—including those from other Horstmann titles. Visit customselect.wiley.com
to create your custom book order.

To order the Wiley Select Edition of Big Java with all 25 chapters in the printed
book, specify ISBN 978-1-119-93670-1 when you order books.

Big Java is available in a variety of eBook formats at prices that are significantly
lower than the printed book. Please contact your Wiley sales rep for more informa-
tion or check www.wiley.com/college/horstmann for available versions.

Web Resources
This book is complemented by a complete suite of online resources. Go to www.wiley.
com/college/horstmann to visit the online companion sites, which include

• “CodeCheck,” a new online service currently in development by Cay Horstmann
that students can use to check their homework assignments and to work on addi-
tional practice problems. Visit http://horstmann.com/codecheck to learn more and to
try it out.

• Source code for all example programs in the book and in online examples.
• Worked Examples that apply the problem-solving steps in the book to other

realistic examples.
• Animations of key concepts.
• Lab exercises that apply chapter concepts (with solutions for instructors only).
• Lecture presentation slides (for instructors only).
• Solutions to all review and programming exercises (for instructors only).
• A test bank that focuses on skills, not just terminology (for instructors only). This

extensive set of multiple-choice questions can be used with a word processor or
imported into a course management system.

FULL CODE EXA

Go to wiley.com/go/
javacode to download
a program that dem
onstrates variables
and assignments.

WORKED EXAMPLE 6.3 A Sample Debugging Session

Learn how to find bugs in an algorithm for counting the
syllables of a word. Go to wiley.com/go/javaexamples and
download Worked Example 6.3.

MPLE

-

Pointers in the book
describe what students
will find on the Web.

bj5_fm_06.indd 7 10/26/12 11:44 AM

http://www.wiley.com/college/horstmann
http://www.wiley
http://horstmann.com/codecheck

viii  Walkthrough 

A Walkthrough of the Learning Aids
The pedagogical elements in this book work together to focus on and reinforce key
concepts and fundamental principles of programming, with additional tips and detail
organized to support and deepen these fundamentals. In addition to traditional
features, such as chapter objectives and a wealth of exercises, each chapter contains
elements geared to today’s visual learner.

FULL CODE EXAMPLE

Go to wiley.com/go/
javacode to download
a program that
uses common loop
algorithms.

Additional full code examples
provides complete programs for
students to run and modify.

254 Chapter 6 Loops

6.3 The for Loop
It often happens that you want to execute a sequence of statements a given number
of times. You can use a while loop that is controlled by a counter, as in the following
example:

int counter = 1; // Initialize the counter
while (counter <= 10) // Check the counter
{
 System.out.println(counter);
 counter++; // Update the counter
}

Because this loop type is so common, there is a spe-
cial form for it, called the for loop (see Syntax 6.2).

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Some people call this loop count-controlled. In con-
trast, the while loop of the preceding section can be
called an event-controlled loop because it executes
until an event occurs; namely that the balance reaches
the target. Another commonly used term for a
count-controlled loop is definite. You know from
the outset that the loop body will be executed a
definite number of times; ten times in our example.
In contrast, you do not know how many iterations it
takes to accumulate a target balance. Such a loop is
called indefinite.

The for loop is
used when a
value runs from a
starting point to an
ending point with a
constant increment
or decrement.

You can visualize the for loop as
an orderly sequence of steps.

Syntax 6.2 for Statement

for (int i = 5; i <= 10; i++)
{
 sum = sum + i;
}

This loop executes 6 times.
 See page 260.

This initialization
happens once
before the loop starts.

The condition is
checked before
each iteration.

This update is
executed after
each iteration.

The variable i is
defined only in this for loop.

See page 261.

These three
expressions should be related.

 See page 259.

for (initialization; condition; update)
{
 statements
}

Syntax

Throughout each chapter,
margin notes show where
new concepts are introduced
and provide an outline of key ideas.

Annotations explain required
components and point to more
information on common errors
or best practices associated
with the syntax.

Annotated syntax boxes
provide a quick, visual overview
of new language constructs.

Like a variable in a computer
program, a parking space has
an identifier and a contents.

Analogies to everyday objects are
used to explain the nature and behavior
of concepts such as variables, data
types, loops, and more.

bj5_fm_06.indd 8 10/24/12 6:23 PM

Walkthrough  ix

7.5 Problem Solving: Discovering Algorithms by Manipulating Physical Objects 339

Now how does that help us with our problem, switching the first and the second
half of the array?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as
Java programmers, we will say that we swap the coins in positions 0 and 4:

Problem Solving sections teach
techniques for generating ideas and
evaluating proposed solutions, often
using pencil and paper or other
artifacts. These sections emphasize
that most of the planning and problem
solving that makes students successful
happens away from the computer.

Next, we swap the coins in positions 1 and 5:

Memorable photos reinforce
analogies and help students
remember the concepts.

In the same way that there can be a street named “Main Street” in different cities,
a Java program can have multiple variables with the same name.

Step 1 Decide what work must be done inside the loop.

Every loop needs to do some kind of repetitive work, such as
• Reading another item.
• Updating a value (such as a bank balance or total).
• Incrementing a counter.
If you can’t figure out what needs to go inside the loop, start by writing down the steps that

HOW TO 6.1 Writing a Loop

This How To walks you through the process of implementing a
loop statement. We will illustrate the steps with the following
example problem.

Problem Statement Read twelve temperature values (one for
each month) and display the number of the month with the high-
est temperature. For example, according to worldclimate.com, the
average maximum temperatures for Death Valley are (in order by
month, in degrees Celsius):

18.2 22.6 26.4 31.1 36.6 42.2 45.7 44.5 40.2 33.1 24.2 17.6
In this case, the month with the highest temperature (45.7 degrees
Celsius) is July, and the program should display 7.

How To guides give step-by-step
guidance for common programming
tasks, emphasizing planning and
testing. They answer the beginner’s
question, “Now what do I do?” and
integrate key concepts into a
problem-solving sequence.

WORKED EXAMPLE 6.1 Credit Card Processing

Learn how to use a loop to remove spaces from a credit card
number. Go to wiley.com/go/javaexamples and download
Worked Example 6.1.

Worked Examples apply
the steps in the How To to a
different example, showing
how they can be used to
plan, implement, and test
a solution to another
programming problem.

Table 1 Variable Declarations in Java

Variable Name Comment

int width = 20; Declares an integer variable and initializes it with 20.

int perimeter = 4 * width; The initial value need not be a fixed value. (Of course, width
must have been previously declared.)

String greeting = "Hi!"; This variable has the type String and is initialized with the
string “Hi”.

height = 30; Error: The type is missing. This statement is not a declaration
but an assignment of a new value to an existing variable—see
Section 2.2.5.

int width = "20"; Error: You cannot initialize a number with the string “20”.
(Note the quotation marks.)

int width; Declares an integer variable without initializing it. This can be a
cause for errors—see Common Error 2.1 on page 42.

int width, height; Declares two integer variables in a single statement. In this
book, we will declare each variable in a separate statement.

Example tables support beginners
with multiple, concrete examples.
These tables point out common
errors and present another quick
reference to the section’s topic.

bj5_fm_06.indd 9 10/24/12 6:28 PM

x  Walkthrough 

section_1/Investment.java

1 /**
2 A class to monitor the growth of an investment that
3 accumulates interest at a fixed annual rate.
4 */
5 public class Investment
6 {
7 private double balance;
8 private double rate;
9 private int year;

10
11 /**
12 Constructs an Investment object from a starting balance and
13 interest rate.
14 @param aBalance the starting balance
15 @param aRate the interest rate in percent
16 */
17 public Investment(double aBalance, double aRate)
18 {
19 balance = aBalance;
20 rate = aRate;
21 year = 0;
22 }
23
24 /**
25 Keeps accumulating interest until a target balance has
26 been reached.
27 @param targetBalance the desired balance
28 */

The for loop neatly groups the initialization, condition, and update expressions
together. However, it is important to realize that these expressions are not executed
together (see Figure 3).

• The initialization is executed once, before the loop is entered. 1

• The condition is checked before each iteration. 2 5

• The update is executed after each iteration. 4

A N I M AT I O N
The for Loop

Figure 3
Execution of a
for Loop

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Initialize counter1

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Check condition2

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Execute loop body3

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Update counter4

for (int counter = 1; counter <= 10; counter++)
{
 System.out.println(counter);
}

Check condition again5

counter = 1

counter = 1

counter = 1

counter = 2

counter = 2

Students can view animations
of key concepts on the Web.

Self-check exercises at the
end of each section are designed
to make students think through
the new material—and can
spark discussion in lecture.

Optional science and business
exercises engage students with
realistic applications of Java.

Program listings are carefully
designed for easy reading,
going well beyond simple
color coding. Methods are set
off by a subtle outline.

This means “compute the value of width + 10 1 and store that value in the variable
width 2 ” (see Figure 4).

In Java, it is not a problem that the variable width is used on both sides of the = sym-
bol. Of course, in mathematics, the equation width = width + 10 has no solution.

Figure 4
Executing the Statement
width = width + 10

1

width =

width + 10

40

30

2

width = 40

Compute the value of the right-hand side

Store the value in the variable

Progressive figures trace code
segments to help students visualize
the program flow. Color is used
consistently to make variables and
other elements easily recognizable.

11. Write the for loop of the Investment class as a while loop.
12. How many numbers does this loop print?

for (int n = 10; n >= 0; n--)
{
 System.out.println(n);
}

13. Write a for loop that prints all even numbers between 10 and 20 (inclusive).
14. Write a for loop that computes the sum of the integers from 1 to n.

Practice It Now you can try these exercises at the end of the chapter: R6.4, R6.10, E6.8, E6.12.

S E L F C H E C K

•• Business E6.17 Currency conversion. Write a program
that first asks the user to type today’s
price for one dollar in Japanese yen,
then reads U.S. dollar values and
converts each to yen. Use 0 as a sentinel.

• Science P6.15 Radioactive decay of radioactive materials can be
modeled by the equation A = A0e-t (log 2/h), where A is
the amount of the material at time t, A0 is the amount
at time 0, and h is the half-life.
Technetium-99 is a radioisotope that is used in imaging
of the brain. It has a half-life of 6 hours. Your program
should display the relative amount A / A0 in a patient
body every hour for 24 hours after receiving a dose.

bj5_fm_05.indd 10 10/18/12 3:25 PM

Walkthrough  xi

Length and Size

Unfortunately, the Java syntax for
determining the number of elements
in an array, an array list, and a string
is not at all consistent. It is a com-
mon error to confuse these. You just
have to remember the correct syntax
for every data type.

Common Error 7.4

Data Type Number of Elements

Array a.length

Array list a.size()

String a.length()

Common Errors describe the kinds
of errors that students often make,
with an explanation of why the errors
occur, and what to do about them.

Hand-Tracing

A very useful technique for understanding whether a pro-
gram works correctly is called hand-tracing. You simulate
the program’s activity on a sheet of paper. You can use this
method with pseudocode or Java code.

Get an index card, a cocktail napkin, or whatever sheet
of paper is within reach. Make a column for each variable.
Have the program code ready. Use a marker, such as a
paper clip, to mark the current statement. In your mind,
execute statements one at a time. Every time the value of a
variable changes, cross out the old value and write the new
value below the old one.

For example, let’s trace the getTax method with the data
from the program run above.

When the TaxReturn object is constructed, the income
instance variable is set to 80,000 and status is set to MARRIED. Then the getTax method is called.
In lines 31 and 32 of TaxReturn.java, tax1 and tax2 are initialized to 0.
29 public double getTax()
30 {
31 double tax1 = 0;
32 double tax2 = 0;
33

Programming Tip 5.5

Hand-tracing helps you
understand whether a
program works correctly.

income status tax1 tax2

 80000 MARRIED 0 0

Because status is not SINGLE, we move to the else
 branch of the outer if statement (line 46).
34 if (status == SINGLE)
35 {
36 if (income <= RATE1_SINGLE_LIMIT)
37 {
38 tax1 = RATE1 * income;
39 }
40 else
41 {
42 tax1 = RATE1 * RATE1_SINGLE_LIMIT;
43 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT);
44 }
45 }
46 else
47 {

File Dialog Boxes

In a program with a graphical user interface, you will want to use a file dialog box (such as the
one shown in the figure below) whenever the users of your program need to pick a file. The
JFileChooser class implements a file dialog box for the Swing user-interface toolkit.

The JFileChooser class has many options to fine-tune the display of the dialog box, but in its
most basic form it is quite simple: Construct a file chooser object; then call the showOpenDialog
or showSaveDialog method. Both methods show the same dialog box, but the button for select-
ing a file is labeled “Open” or “Save”, depending on which method you call.

For better placement of the dialog box on the screen, you can specify the user-interface
component over which to pop up the dialog box. If you don’t care where the dialog box pops
up, you can simply pass null. The showOpenDialog and showSaveDialog methods return either
JFileChooser.APPROVE_OPTION, if the user has chosen a file, or JFi leChooser.CANCEL_OPTION, if the
user canceled the selection. If a file was chosen, then you call the getSelectedFile method to
obtain a File object that describes the file. Here is a complete example:

JFileChooser chooser = new JFileChooser();
Scanner in = null;
if (chooser.showOpenDialog(null) == JFileChooser.APPROVE_OPTION)
{

File selectedFile = chooser.getSelectedFile();
in = new Scanner(selectedFile);
. . .

}

Special Topic 11.2

A JFileChooser Dialog Box

Call with
showOpenDialog

method

Button is “Save” when
showSaveDialog method

is called

FULL CODE EXAMPLE

Go to wiley.com/go/
javacode to download
a program that
demonstrates how to
use a file chooser.

When computers
were first invented

in the 1940s, a computer filled an
entire room. The photo below shows
the ENIAC (electronic numerical inte-
grator and computer), completed in
1946 at the University of Pennsylvania.
The ENIAC was used by the military
to compute the trajectories of projec-
tiles. Nowadays, computing facilities
of search engines, Internet shops, and
social networks fill huge buildings
called data centers. At the other end of
the spectrum, computers are all around
us. Your cell phone has a computer
inside, as do many credit cards and fare
cards for public transit. A modern car
has several computers––to control the
engine, brakes, lights, and the radio.

This transit card contains a computer.

The advent of ubiqui-
tous computing changed
many aspects of our
lives. Factories used
to employ people to
do repetitive assembly
tasks that are today car-
ried out by computer-
controlled robots, oper-
ated by a few people
who know how to work
with those computers.
Books, music, and mov-
ies are nowadays often
consumed on com-
puters, and comput-
ers are almost always
involved in their production. The
book that you are reading right now

could not have been written without
computers.

Computing & Society 1.1 Computers Are Everywhere

Computing & Society presents social
and historical topics on computing—for
interest and to fulfill the “historical and
social context” requirements of the
ACM/IEEE curriculum guidelines.

Special Topics present optional
topics and provide additional
explanation of others. New
features of Java 7 are also
covered in these notes.

Programming Tips explain
good programming practices,
and encourage students to be
more productive with tips and
techniques such as hand-tracing.

bj5_fm_05.indd 11 10/18/12 3:25 PM

xii  Walkthrough 

Test Bank Instructors can use quiz and
test questions designed to exercise
students’ code reading and writing skills.

Web Resources

CodeCheck “CodeCheck” is a new
online service currently in development
by Cay Horstmann that students can
use to check their homework and to
work on additional practice problems.
Visit http://horstmann.com/codecheck
to learn more and to try it out.

10) What is displayed after executing the given code snippet?

int[] mymarks = new int[10];
int total = 0;
Scanner in = new Scanner(System.in);
for (int cnt = 1; cnt <= 10; cnt++)
{
 System.out.print("Enter the marks: ");
 mymarks[cnt] = in.nextInt();
 total = total + mymarks[cnt];
}
System.out.println(total);

a) The code snippet displays the total marks of all ten subjects.
b) The for loop causes a run-time time error on the first iteration.
c) The code snippet causes a bounds error.
d) The code snippet displays zero.

1.1) Consider the following Card class.

public class Card
{
 private String name;

 public Card()
 {
 name = "";
 }

 public Card(String n)
 {
 name = n;
 }

 public String getName()
 {
 return name;
 }

 public boolean isExpired()
 {
 return false;
 }

 public String format()
 {
 return "Card holder: " + name;
 }
}

Use this class as a superclass to implement a hierarchy of related classes:

Class Data
IDCard ID number
CallingCard Card number, PIN
DriverLicense Expiration year

Write declarations for each of the subclasses. For each subclass, supply private instance variables. Leave the
bodies of the constructors and the format methods blank for now.

Lab Exercises These multi-part
exercises ask students to apply
chapter concepts. They can serve
as “warm-ups” in the lab or to
provide additional practice.

Animations Students can
play and replay dynamic
explanations of concepts
and program flow.

http://horstmann.com/codecheck/

bj5_fm_06.indd 12 10/24/12 6:23 PM

http://horstmann.com/codecheck
http://horstmann.com/codecheck/

Acknowledgments  xiii

Acknowledgments
Many thanks to Beth Lang Golub, Don Fowley, Elizabeth Mills, Katherine Willis,
Jenny Welter, Wendy Ashenberg, Lisa Gee, Kevin Holm, and Tim Lindner at John
Wiley & Sons, and Vickie Piercey at Publishing Services for their help with this proj-
ect. An especially deep acknowledgment and thanks goes to Cindy Johnson for her
hard work, sound judgment, and amazing attention to detail.

I am grateful to Suchindran Chatterjee, Arizona State University, Jose Cordova,
University of Louisiana, Udayan Das, DeVry University, James Johnson, Aaron
Keen, California Polytechnic State University San Luis Obispo, Norm Krumpe,
Miami University Ohio, Kathy Liszka, University of Akron, Kathleen O’Brien, San
Jose State University, Donald Smith, Columbia College, Mark Thomas, University of
Cincinnati, Laurie White, Mercer University, Brent Wilson, George Fox University,
and David Woolbright, Columbus State University, for their excellent contributions
to the supplementary materials.

Many thanks to the individuals who reviewed the manuscript for this edition,
made valuable suggestions, and brought an embarrassingly large number of errors
and omissions to my attention. They include:

Eric Aaron, Wesleyan University
James Agnew, Anne Arundel

Community College
Greg Ballinger, Miami Dade

College
Jon Beck, Truman State

University
Matt Boutell, Rose-Hulman

Institute of Technology
John Bundy, DeVry University

Chicago
Michael Carney, Finger Lakes

Community College
Christopher Cassa,

Massachusetts Institute of
Technology

Dr. Suchindran S. Chatterjee,
Arizona State University

Tina Comston, Franklin
University

Lennie Cooper, Miami Dade
College

Sherif Elfayoumy, University of
North Florida

Henry A Etlinger, Rochester
Institute of Technology

Guy Helmer, Iowa State
University

Ed Holden, Rochester Institute
of Technology

Steven Janke, Colorado College
Mark Jones, Lock Haven

University of Pennsylvania
Dr. Mustafa Kamal, University of

Central Missouri
Gary J. Koehler, University of

Florida
Ronald Krawitz, DeVry

University
Norm Krumpe, Miami

University Ohio
Jim Leone, Rochester Institute

of Technology
Kevin Lillis, St. Ambrose

University
Darren Lim, Siena College
Hong Lin, DeVry University
Kuber Maharjan, Purdue

University College of
Technology at Columbus

Patricia McDermott-Wells,
Florida International
University

Bill Mongan, Drexel University
George Novacky, University

of Pittsburgh
Mimi Opkins, California State

University Long Beach
Derek Pao, City University of

Hong Kong
Katherine Salch, Illinois Central

College
Javad Shakib, DeVry University
Charlie Shu, Franklin University
Joslyn A. Smith, Florida

International University
Robert Strader, Stephen F. Austin

State University
Jonathan S. Weissman, Finger

Lakes Community College
Katherine H. Winters, University

of Tennessee Chattanooga
Tom Wulf, University of

Cincinnati
Qi Yu, Rochester Institute of

Technology

bj5_fm_06.indd 13 11/9/12 11:56 AM

xiv  Acknowledgments 

Tim Andersen, Boise State University
Ivan Bajic, San Diego State University
Ted Bangay, Sheridan Institute

of Technology
Ian Barland, Radford University
George Basham, Franklin University
Sambit Bhattacharya, Fayetteville

State University
Rick Birney, Arizona State University
Paul Bladek, Edmonds Community

College
Joseph Bowbeer, Vizrea Corporation
Timothy A. Budd, Oregon State

University
Robert P. Burton, Brigham Young

University
Frank Butt, IBM
Jerry Cain, Stanford University
Adam Cannon, Columbia University
Nancy Chase, Gonzaga University
Archana Chidanandan, Rose-Hulman

Institute of Technology
Vincent Cicirello, The Richard

Stockton College of New Jersey
Teresa Cole, Boise State University
Deborah Coleman, Rochester Institute

of Technology
Jose Cordova, University of Louisiana,

Monroe
Valentino Crespi, California State

University, Los Angeles
Jim Cross, Auburn University
Russell Deaton, University

of Arkansas
Geoffrey Decker, Northern Illinois

University
H. E. Dunsmore, Purdue University
Robert Duvall, Duke University
Eman El-Sheikh, University of

West Florida
John Fendrich, Bradley University
David Freer, Miami Dade College
John Fulton, Franklin University
David Geary, Sabreware, Inc.
Margaret Geroch, Wheeling Jesuit

University
Ahmad Ghafarian, North Georgia

College & State University
Rick Giles, Acadia University
Stacey Grasso, College of San Mateo
Jianchao Han, California State

University, Dominguez Hills
Lisa Hansen, Western New England

College

Elliotte Harold
Eileen Head, Binghamton University
Cecily Heiner, University of Utah
Brian Howard, Depauw University
Lubomir Ivanov, Iona College
Norman Jacobson, University of

California, Irvine
Curt Jones, Bloomsburg University
Aaron Keen, California Polytechnic

State University, San Luis Obispo
Mugdha Khaladkar, New Jersey

Institute of Technology
Elliot Koffman, Temple University
Kathy Liszka, University of Akron
Hunter Lloyd, Montana State

University
Youmin Lu, Bloomsburg University
John S. Mallozzi, Iona College
John Martin, North Dakota State

University
Jeanna Matthews, Clarkson University
Scott McElfresh, Carnegie Mellon

University
Joan McGrory, Christian Brothers

University
Carolyn Miller, North Carolina

State University
Sandeep R. Mitra, State University

of New York, Brockport
Teng Moh, San Jose State University
John Moore, The Citadel
Jose-Arturo Mora-Soto, Jesica

Rivero-Espinosa, and Julio-Angel
Cano-Romero, University
of Madrid

Faye Navabi, Arizona State University
Parviz Partow-Navid, California State

University, Los Angeles
Kevin O’Gorman, California

Polytechnic State University, San
Luis Obispo

Michael Olan, Richard Stockton
College

Kevin Parker, Idaho State University
Jim Perry, Ulster County Community

College
Cornel Pokorny, California

Polytechnic State University,
San Luis Obispo

Roger Priebe, University of Texas,
Austin

C. Robert Putnam, California State
University, Northridge

Kai Qian, Southern Polytechnic
State University

Cyndi Rader, Colorado School
of Mines

Neil Rankin, Worcester Polytechnic
Institute

Brad Rippe, Fullerton College
Pedro I. Rivera Vega, University

of Puerto Rico, Mayaguez
Daniel Rogers, SUNY Brockport
Chaman Lal Sabharwal, Missouri

University of Science and
Technology

John Santore, Bridgewater State
College

Carolyn Schauble, Colorado State
University

Brent Seales, University of Kentucky
Christian Shin, SUNY Geneseo
Jeffrey Six, University of Delaware
Don Slater, Carnegie Mellon

University
Ken Slonneger, University of Iowa
Donald Smith, Columbia College
Stephanie Smullen, University of

Tennessee, Chattanooga
Monica Sweat, Georgia Institute

of Technology
Peter Stanchev, Kettering University
Shannon Tauro, University of

California, Irvine
Ron Taylor, Wright State University
Russell Tessier, University of

Massachusetts, Amherst
Jonathan L. Tolstedt, North Dakota

State University
David Vineyard, Kettering University
Joseph Vybihal, McGill University
Xiaoming Wei, Iona College
Todd Whittaker, Franklin University
Robert Willhoft, Roberts Wesleyan

College
Lea Wittie, Bucknell University
David Womack, University of Texas

at San Antonio
David Woolbright, Columbus State

University
Catherine Wyman, DeVry University
Arthur Yanushka, Christian Brothers

University
Salih Yurttas, Texas A&M University

Every new edition builds on the suggestions and experiences of prior reviewers and
users. I am grateful for the invaluable contributions these individuals have made:

bj5_fm_06.indd 14 11/6/12 9:23 PM

cONTeNTS

xv

Preface  iii

SPecIaL feaTureS  xxii

INTrODucTION  1

1.1  computer Programs    2

1.2  The anatomy of a computer    3

1.3  The Java Programming Language    6

1.4  Becoming familiar with Your Programming environment    8

1.5  analyzing Your first Program    12

1.6  errors    15

1.7  Problem Solving: algorithm Design    16

uSING OBJecTS  33

2.1  Objects and classes    34

2.2  Variables    36

2.3  calling Methods    43

2.4  constructing Objects    48

2.5  accessor and Mutator Methods    50

2.6  The aPI Documentation    52

2.7  Implementing a Test Program 55

2.8  Object references 57

2.9  Graphical applications 61

2.10  ellipses, Lines, Text, and color 66

IMPLeMeNTING cLaSSeS  81

3.1  Instance Variables and encapsulation    82

3.2  Specifying the Public Interface of a class    86

3.3  Providing the class Implementation    93

3.4  unit Testing 102

3.5  Problem Solving: Tracing Objects    105

3.6  Local Variables    107

3.7  The this reference    109

3.8  Shape classes 112

ChAPteR 1

ChAPteR 2

ChAPteR 3

bj5_fm_05.indd 15 10/18/12 3:25 PM

xvi  contents 

fuNDaMeNTaL DaTa TYPeS  131

4.1  Numbers    132

4.2  arithmetic    139

4.3  Input and Output    147

4.4  Problem Solving: first Do it By Hand    154

4.5  Strings    156

DecISIONS  179

5.1  The if Statement    180

5.2  comparing Values    186

5.3  Multiple alternatives    196

5.4  Nested Branches    200

5.5  Problem Solving: flowcharts    207

5.6  Problem Solving: Selecting Test cases 210

5.7  Boolean Variables and Operators    213

5.8  application: Input Validation    218

LOOPS  241

6.1  The while Loop    242

6.2  Problem Solving: Hand-Tracing    249

6.3  The for Loop    254

6.4  The do Loop    262

6.5  application: Processing Sentinel Values    263

6.6  Problem Solving: Storyboards    269

6.7  common Loop algorithms    272

6.8  Nested Loops    279

6.9  application: random Numbers and Simulations    283

6.10  using a Debugger 286

 arraYS aND arraY LISTS  311

7.1  arrays    312

7.2  The enhanced for Loop    321

7.3  common array algorithms    322

7.4  Problem Solving: adapting algorithms    331

7.5  Problem Solving: Discovering algorithms by Manipulating 

Physical Objects    336

7.6  Two-Dimensional arrays    340

ChAPteR 4

ChAPteR 5

ChAPteR 6

ChAPteR 7

bj5_fm_05.indd 16 10/18/12 3:25 PM

contents  xvii

7.7  array Lists    347

7.8  regression Testing 356

DeSIGNING cLaSSeS  379

8.1  Discovering classes    380

8.2  Designing Good Methods    381

8.3  Problem Solving: Patterns for Object Data    390

8.4  Static Variables and Methods    395

8.5  Packages    400

8.6  unit Test frameworks    407

INHerITaNce  421

9.1  Inheritance Hierarchies    422

9.2  Implementing Subclasses    426

9.3  Overriding Methods    431

9.4  Polymorphism    437

9.5  Object: The cosmic Superclass    448

INTerfaceS  463

10.1  using Interfaces for algorithm reuse    464

10.2  Working with Interface Variables    471

10.3  The Comparable Interface    473

10.4  using Interfaces for callbacks    477

10.5  Inner classes    481

10.6  Mock Objects    483

10.7  event Handling    484

10.8  Building applications with Buttons    490

10.9  Processing Timer events    494

10.10  Mouse events    497

INPuT/OuTPuT aND excePTION HaNDLING  513

11.1  reading and Writing Text files    514

11.2  Text Input and Output    519

11.3  command Line arguments    527

11.4  exception Handling    534

11.5  application: Handling Input errors    545

ChAPteR 8

ChAPteR 9

ChAPteR 10

ChAPteR 11

bj5_fm_05.indd 17 10/18/12 3:25 PM

xviii  contents 

OBJecT-OrIeNTeD DeSIGN  559

12.1  classes and Their responsibilities    560

12.2  relationships Between classes    563

12.3  application: Printing an Invoice    569

recurSION  587

13.1  Triangle Numbers    588

13.2  recursive Helper Methods    596

13.3  The efficiency of recursion    598

13.4  Permutations    603

13.5  Mutual recursion    608

13.6  Backtracking    614

SOrTING aND SearcHING  629

14.1  Selection Sort    630

14.2  Profiling the Selection Sort algorithm    633

14.3  analyzing the Performance of the Selection Sort algorithm    636

14.4  Merge Sort    641

14.5  analyzing the Merge Sort algorithm    644

14.6  Searching    648

14.7  Problem Solving: estimating the running Time of an algorithm    653

14.8  Sorting and Searching in the Java Library    658

THe JaVa cOLLecTIONS fraMeWOrk  671

15.1  an Overview of the collections framework    672

15.2  Linked Lists    675

15.3  Sets    681

15.4  Maps    686

15.5  Stacks, Queues, and Priority Queues    692

15.6  Stack and Queue applications    695

BaSIc DaTa STrucTureS  715

16.1  Implementing Linked Lists    716

16.2  Implementing array Lists    731

16.3  Implementing Stacks and Queues    735

16.4  Implementing a Hash Table    741

ChAPteR 12

ChAPteR 13

ChAPteR 14

ChAPteR 15

ChAPteR 16

bj5_fm_05.indd 18 10/18/12 3:25 PM

contents  xix

Tree STrucTureS  761

17.1  Basic Tree concepts    762

17.2  Binary Trees    766

17.3  Binary Search Trees    771

17.4  Tree Traversal    780

17.5  red-Black Trees    786

17.6  Heaps    793

17.7  The Heapsort algorithm    804

GeNerIc cLaSSeS  819

18.1  Generic classes and Type Parameters    820

18.2  Implementing Generic Types    821

18.3  Generic Methods    825

18.4  constraining Type Parameters    827

18.5  Type erasure    831

GraPHIcaL uSer INTerfaceS  841

19.1  Layout Management    842

19.2  Processing Text Input    846

19.3  choices    852

19.4  Menus    863

19.5  exploring the Swing Documentation    869

STreaMS aND BINarY INPuT/OuTPuT  881

20.1  readers, Writers, and Streams    882

20.2  Binary Input and Output    883

20.3  random access    887

20.4  Object Streams    893

MuLTITHreaDING  (WeB ONLY) 

21.1  running Threads

21.2  Terminating Threads

21.3  race conditions

21.4  Synchronizing Object access

21.5  avoiding Deadlocks

21.6  application: algorithm animation

ChAPteR 17

ChAPteR 18

ChAPteR 19

ChAPteR 20

ChAPteR 21

bj5_fm_05.indd 19 10/18/12 3:25 PM

xx  Contents 

Internet networkIng  (weB onLY) 

22.1  the Internet Protocol

22.2  Application Level Protocols

22.3  A Client Program

22.4  A Server Program

22.5  UrL Connections

reLAtIonAL dAtABASeS  (weB onLY) 

23.1  organizing database Information

23.2  Queries

23.3  Installing a database

23.4  database Programming in Java

23.5  Application: entering an Invoice

XML  (weB onLY) 

24.1  XML tags and documents

24.2  Parsing XML documents

24.3  Creating XML documents

24.4  Validating XML documents

weB APPLICAtIonS  (weB onLY) 

25.1  the Architecture of a web Application

25.2  the Architecture of a JSF Application

25.3  JavaBeans Components

25.4  navigation Between Pages

25.5  JSF Components

25.6  A three-tier Application

APPendIX A  tHe BASIC LAtIn And LAtIn-1 SUBSetS oF UnICode     A-1

APPendIX B  JAVA oPerAtor SUMMArY    A-5

APPendIX C  JAVA reSerVed word SUMMArY    A-7

APPendIX d  tHe JAVA LIBrArY    A-9

APPendIX e  JAVA SYntAX SUMMArY    A-53

APPendIX F  tooL SUMMArY    A-64

APPendIX g  nUMBer SYSteMS    A-68

APPendIX H  UML SUMMArY    A-76

ChApter 22

ChApter 23

ChApter 24

ChApter 25

AppendiCes

bj5_fm_06.indd 20 11/6/12 9:23 PM

contents  xxi

aPPeNDIx I  JaVa LaNGuaGe cODING GuIDeLINeS    A-79

aPPeNDIx J  HTML SuMMarY    A-86

GLOSSarY    G-1

INDex    i-1

creDITS    C-1

 SYNTax BOxeS

arrays     313
array Lists     347
assignment     41

calling a Superclass Method    431
cast    143 
catching exceptions     536
class Declaration    89
comparisons     187
constant Declaration    136
constructor with Superclass Initializer    436

Declaring a Generic class    822
Declaring a Generic Method    826
Declaring an Interface    465

for Statement     254

if Statement     182
Implementing an Interface    467
Importing a class from a Package    54
Input Statement     147
Instance Variable Declaration    83

Java Program    13

Object construction    49

Package Specification    402

Subclass Declaration    428

The enhanced for Loop    322
The finally clause    540
The instanceof Operator    451
The throws clause    539
Throwing an exception    534
Two-Dimensional array Declaration    341

while Statement    243

Variable Declaration    37

AlPhAbetiCAl liSt oF

bj5_fm_05.indd 21 10/18/12 3:25 PM

xxii  Special features

© Steve Simzer/iStockphoto.

cHaPTer

 Available online at www.wiley.com/college/horstmann.

© John Bell/iStockphoto.

Programming 
Tips Special Topics computing & 

Society

Backup copies    11

 

computers are everywhere  5

choose Descriptive  
Variable Names  43

Learn By Trying   47
Don’t Memorize—use  

Online Help  55

Testing classes in an Interactive 
environment  56

computer Monopoly    60

The javadoc utility  92 calling One constructor  
from another  112

electronic Voting Machines  104

Do Not use Magic Numbers  139
Spaces in expressions  145
reading exception reports  162

Big Numbers  138
combining assignment  

and arithmetic  145
Instance Methods and  

Static Methods  145
using Dialog Boxes for Input  

and Output  162

The Pentium floating-Point 
Bug    146

International alphabets  
and unicode    163

Brace Layout  184
always use Braces  184
Tabs  185
avoid Duplication  

in Branches  186
Hand-Tracing  203
Make a Schedule and  

Make Time for  
unexpected Problems  212

The conditional Operator  185
The switch Statement  199
Block Scope  205
enumeration Types  206
Logging  212 
Short-circuit evaluation of  

Boolean Operators  217
De Morgan’s Law  217

Denver’s Luggage 
Handling System  195

artificial Intelligence  221

common 
errors

How Tos 
 and 

Worked examples

1 Introduction  Omitting Semicolons  14
Misspelling Words  16

Describing an algorithm  
with Pseudocode  20

Writing an algorithm for  
Tiling a floor  22

2 using Objects using undeclared or 
uninitialized Variables  42

confusing Variable Declarations 
and assignment Statements  42

Trying to Invoke a constructor 
Like a Method  50

How Many Days Have You  
Been alive? 

Working with Pictures 

3 Implementing classes Declaring a constructor  
as void    92

Ignoring Parameter Variables  98
Duplicating Instance Variables 

in Local Variables  108
Providing unnecessary 

Instance Variables  108
forgetting to Initialize Object  

references in a constructor 109

Implementing a class  98
Making a Simple Menu 
Drawing Graphical Shapes  116

4 fundamental  
Data Types 

unintended Integer Division  144
unbalanced Parentheses  144

carrying out computations  151
computing the Volume and 

Surface area of a Pyramid 
computing Travel Time 

5 Decisions a Semicolon after the  
if condition  184

using == to compare Strings  192
The Dangling else Problem  204
combining Multiple  

relational Operators  216
confusing && and 
|| conditions  216

Implementing an  
if Statement  193

extracting the Middle 

bj5_fm_05.indd 22 10/18/12 3:25 PM

http://www.wiley.com/college/horstmann

Special features  xxiii

 Available online at www.wiley.com/college/horstmann.

© Eric Isselé/iStockphoto.
© Eric Isselé/iStockphoto. © Media Bakery.

Programming 
Tips Special Topics computing & 

Society

Backup copies    11

 

computers are everywhere  5

choose Descriptive  
Variable Names  43

Learn By Trying   47
Don’t Memorize—use  

Online Help  55

Testing classes in an Interactive 
environment  56

computer Monopoly    60

The javadoc utility  92 calling One constructor  
from another  112

electronic Voting Machines  104

Do Not use Magic Numbers  139
Spaces in expressions  145
reading exception reports  162

Big Numbers  138
combining assignment  

and arithmetic  145
Instance Methods and  

Static Methods  145
using Dialog Boxes for Input  

and Output  162

The Pentium floating-Point 
Bug    146

International alphabets  
and unicode    163

Brace Layout  184
always use Braces  184
Tabs  185
avoid Duplication  

in Branches  186
Hand-Tracing  203
Make a Schedule and  

Make Time for  
unexpected Problems  212

The conditional Operator  185
The switch Statement  199
Block Scope  205
enumeration Types  206
Logging  212 
Short-circuit evaluation of  

Boolean Operators  217
De Morgan’s Law  217

Denver’s Luggage 
Handling System  195

artificial Intelligence  221

common 
errors

How Tos 
 and 

Worked examples

1 Introduction  Omitting Semicolons  14
Misspelling Words  16

Describing an algorithm  
with Pseudocode  20

Writing an algorithm for  
Tiling a floor  22

2 using Objects using undeclared or 
uninitialized Variables  42

confusing Variable Declarations 
and assignment Statements  42

Trying to Invoke a constructor 
Like a Method  50

How Many Days Have You  
Been alive? 

Working with Pictures 

3 Implementing classes Declaring a constructor  
as void    92

Ignoring Parameter Variables  98
Duplicating Instance Variables 

in Local Variables  108
Providing unnecessary 

Instance Variables  108
forgetting to Initialize Object  

references in a constructor 109

Implementing a class  98
Making a Simple Menu 
Drawing Graphical Shapes  116

4 fundamental  
Data Types 

unintended Integer Division  144
unbalanced Parentheses  144

carrying out computations  151
computing the Volume and 

Surface area of a Pyramid 
computing Travel Time 

5 Decisions a Semicolon after the  
if condition  184

using == to compare Strings  192
The Dangling else Problem  204
combining Multiple  

relational Operators  216
confusing && and 
|| conditions  216

Implementing an  
if Statement  193

extracting the Middle 

bj5_fm_05.indd 23 10/18/12 3:25 PM

http://www.wiley.com/college/horstmann

xxiv  Special features

© Steve Simzer/iStockphoto.

cHaPTer

 Available online at www.wiley.com/college/horstmann.

© John Bell/iStockphoto.

Programming 
Tips Special Topics computing & 

Society

use for Loops for Their
Intended Purpose Only  259

choose Loop Bounds That 
Match Your Task  260

count Iterations  260
flowcharts for Loops  263 

Variables Declared in a 
for Loop Header  261

redirection of Input  
and Output  266

The Loop-and-a-Half Problem 266

The break and continue 
Statements  267

Software Piracy  253
The first Bug  291
 

 
 

use arrays for Sequences of  
related Items  318

Make Parallel arrays into  
arrays of Objects  318

Batch files and Shell Scripts  358

Methods with a Variable  
Number of arguments  319

Sorting with the Java Library  331
Two-Dimensional arrays  

with Variable row Lengths  345
Multidimensional arrays  347
The Diamond Syntax in  

Java 7  356

computer Viruses  320
The Therac-25 Incidents  359

consistency  385
Minimize the use of  

Static Methods  397

call by Value and call  
by reference  386

Static Imports  398
alternative forms of  

Instance and Static  
Variable Initialization    399

Package access  404

Personal computing    406

use a Single class for Variation 
in Values, Inheritance for  
Variation in Behavior  426

calling the Superclass  
constructor  436

Dynamic Method Lookup and  
the Implicit Parameter   440

abstract classes   441
final Methods and classes   442
Protected access   442
Inheritance and the  
toString Method   453

Inheritance and the  
equals Method   454

Who controls the Internet?  454

common 
errors

How Tos 
 and 

Worked examples

6 Loops Don’t Think “are We 
There Yet?”  247

Infinite Loops  248
Off-by-One errors  248

Writing a Loop  276
credit card Processing 
Manipulating the Pixels 

in an Image 
Debugging  289
a Sample Debugging Session 

7 arrays and array Lists Bounds errors    318
uninitialized and  

unfilled arrays  318
underestimating the  

Size of a Data Set  331
Length and Size  356

Working with arrays  334
rolling the Dice 
a World Population Table 

8 Designing classes Trying to access Instance  
Variables in Static Methods  398

confusing Dots  403

Programming with Packages  404

9 Inheritance replicating Instance Variables 
from the Superclass  430

confusing Super- and  
Subclasses  430

accidental Overloading  435
forgetting to use super 

When Invoking a  
Superclass Method  435

Don’t use Type Tests   452

Developing an  
Inheritance Hierarchy  443

Implementing an  
employee Hierarchy for  
Payroll Processing 

bj5_fm_05.indd 24 10/18/12 3:25 PM

http://www.wiley.com/college/horstmann

Special features  xxv

 Available online at www.wiley.com/college/horstmann.

© Eric Isselé/iStockphoto.
© Eric Isselé/iStockphoto. © Media Bakery.

Programming 
Tips Special Topics computing & 

Society

use for Loops for Their
Intended Purpose Only  259

choose Loop Bounds That 
Match Your Task  260

count Iterations  260
flowcharts for Loops  263 

Variables Declared in a 
for Loop Header  261

redirection of Input  
and Output  266

The Loop-and-a-Half Problem 266

The break and continue 
Statements  267

Software Piracy  253
The first Bug  291
 

 
 

use arrays for Sequences of  
related Items  318

Make Parallel arrays into  
arrays of Objects  318

Batch files and Shell Scripts  358

Methods with a Variable  
Number of arguments  319

Sorting with the Java Library  331
Two-Dimensional arrays  

with Variable row Lengths  345
Multidimensional arrays  347
The Diamond Syntax in  

Java 7  356

computer Viruses  320
The Therac-25 Incidents  359

consistency  385
Minimize the use of  

Static Methods  397

call by Value and call  
by reference  386

Static Imports  398
alternative forms of  

Instance and Static  
Variable Initialization    399

Package access  404

Personal computing    406

use a Single class for Variation 
in Values, Inheritance for  
Variation in Behavior  426

calling the Superclass  
constructor  436

Dynamic Method Lookup and  
the Implicit Parameter   440

abstract classes   441
final Methods and classes   442
Protected access   442
Inheritance and the  
toString Method   453

Inheritance and the  
equals Method   454

Who controls the Internet?  454

common 
errors

How Tos 
 and 

Worked examples

6 Loops Don’t Think “are We 
There Yet?”  247

Infinite Loops  248
Off-by-One errors  248

Writing a Loop  276
credit card Processing 
Manipulating the Pixels 

in an Image 
Debugging  289
a Sample Debugging Session 

7 arrays and array Lists Bounds errors    318
uninitialized and  

unfilled arrays  318
underestimating the  

Size of a Data Set  331
Length and Size  356

Working with arrays  334
rolling the Dice 
a World Population Table 

8 Designing classes Trying to access Instance  
Variables in Static Methods  398

confusing Dots  403

Programming with Packages  404

9 Inheritance replicating Instance Variables 
from the Superclass  430

confusing Super- and  
Subclasses  430

accidental Overloading  435
forgetting to use super 

When Invoking a  
Superclass Method  435

Don’t use Type Tests   452

Developing an  
Inheritance Hierarchy  443

Implementing an  
employee Hierarchy for  
Payroll Processing 

bj5_fm_05.indd 25 10/18/12 3:25 PM

http://www.wiley.com/college/horstmann

xxvi  Special features

© Steve Simzer/iStockphoto.

cHaPTer

 Available online at www.wiley.com/college/horstmann.

© John Bell/iStockphoto.

Programming 
Tips Special Topics computing & 

Society

Don’t use a container  
as a Listener  493

constants in Interfaces  470
The clone Method and the 
Cloneable Interface  475

anonymous classes  482 
keyboard events  500
event adapters  501

Open Source and  
free Software  502

Throw early, catch Late  542
Do Not Squelch exceptions  542
Do Not use catch and finally 

in the Same try Statement  542
Do Throw Specific  

exceptions  543

reading Web Pages  517
file Dialog Boxes  517
character encodings  518
regular expressions  526
assertions  543
automatic resource Management 

in Java 7  544

encryption algorithms  533
The ariane rocket Incident  544

attributes and Methods in  
uML Diagrams  567

Multiplicities  568
aggregation, association,  

and composition  568

Databases and Privacy  580

The Limits of computation  606

common 
errors

How Tos 
 and 

Worked examples

10 Interfaces forgetting to Declare Implement-
ing Methods as Public  470

Trying to Instantiate 
an Interface  470

Modifying Parameter Types in the 
Implementing Method  489

Trying to call 
Listener Methods   490

forgetting to attach  
a Listener  493

forgetting to repaint  496 

Investigating Number  
Sequences 

11 Input/Output and  
exception Handling

Backslashes in file Names  517
constructing a Scanner  

with a String  517

Processing Text files    530
analyzing Baby Names   

12 Object-Oriented Design using crc cards and  
uML Diagrams in  
Program Design  566

Simulating an automatic  
Teller Machine 

13 recursion Infinite recursion  592
Tracing Through recursive  

Methods  592

Thinking recursively    593
finding files 
Towers of Hanoi 

bj5_fm_05.indd 26 10/18/12 3:25 PM

http://www.wiley.com/college/horstmann

Special features  xxvii

 Available online at www.wiley.com/college/horstmann.

© Eric Isselé/iStockphoto.
© Eric Isselé/iStockphoto. © Media Bakery.

Programming 
Tips Special Topics computing & 

Society

Don’t use a container  
as a Listener  493

constants in Interfaces  470
The clone Method and the 
Cloneable Interface  475

anonymous classes  482 
keyboard events  500
event adapters  501

Open Source and  
free Software  502

Throw early, catch Late  542
Do Not Squelch exceptions  542
Do Not use catch and finally 

in the Same try Statement  542
Do Throw Specific  

exceptions  543

reading Web Pages  517
file Dialog Boxes  517
character encodings  518
regular expressions  526
assertions  543
automatic resource Management 

in Java 7  544

encryption algorithms  533
The ariane rocket Incident  544

attributes and Methods in  
uML Diagrams  567

Multiplicities  568
aggregation, association,  

and composition  568

Databases and Privacy  580

The Limits of computation  606

common 
errors

How Tos 
 and 

Worked examples

10 Interfaces forgetting to Declare Implement-
ing Methods as Public  470

Trying to Instantiate 
an Interface  470

Modifying Parameter Types in the 
Implementing Method  489

Trying to call 
Listener Methods   490

forgetting to attach  
a Listener  493

forgetting to repaint  496 

Investigating Number  
Sequences 

11 Input/Output and  
exception Handling

Backslashes in file Names  517
constructing a Scanner  

with a String  517

Processing Text files    530
analyzing Baby Names   

12 Object-Oriented Design using crc cards and  
uML Diagrams in  
Program Design  566

Simulating an automatic  
Teller Machine 

13 recursion Infinite recursion  592
Tracing Through recursive  

Methods  592

Thinking recursively    593
finding files 
Towers of Hanoi 

bj5_fm_05.indd 27 10/18/12 3:25 PM

http://www.wiley.com/college/horstmann

xxviii  Special features

© Steve Simzer/iStockphoto.

cHaPTer

 Available online at www.wiley.com/college/horstmann.

© John Bell/iStockphoto.

Programming 
Tips Special Topics computing & 

Society

Oh, Omega, and Theta  638
Insertion Sort  639
The Quicksort algorithm  646
The Parameterized  
Comparable Interface  660

The Comparator Interface  661

The first Programmer  652

use Interface references to  
Manipulate Data Structures 685

Hash functions  690
reverse Polish Notation  703

Standardization  680

Static classes  730
Open addressing  749

Wildcard Types  830
reflection  834

use a GuI Builder  862 adding the main Method 
to the frame class  846

common 
errors

How Tos 
 and 

Worked examples

14 Sorting and Searching The compareTo Method can 
return any Integer,  
Not Just –1, 0, and 1  660

enhancing the Insertion  
Sort algorithm 

15 The Java collections 
framework

choosing a collection  688
Word frequency 
Simulating a Queue of  

Waiting customers   

16 Basic Data Structures Implementing a Doubly- 
Linked List   

17 Tree Structures Building a Huffman Tree 
Implementing a  

red-Black Tree 

18 Generic classes Genericity and Inheritance  829
The array Store exception  829
using Generic Types in a  

Static context  834

Making a Generic Binary  
Search Tree class 

19 Graphical user  
Interfaces

By Default, components have  
Zero Width and Height  845

Laying Out a user Interface  859
Programming a Working  

calculator 

20 Streams and Binary  
Input/Output

Negative byte Values  887 choosing a file format  896

bj5_fm_05.indd 28 10/18/12 3:25 PM

http://www.wiley.com/college/horstmann

Special features  xxix

 Available online at www.wiley.com/college/horstmann.

© Eric Isselé/iStockphoto.
© Eric Isselé/iStockphoto. © Media Bakery.

Programming 
Tips Special Topics computing & 

Society

Oh, Omega, and Theta  638
Insertion Sort  639
The Quicksort algorithm  646
The Parameterized  
Comparable Interface  660

The Comparator Interface  661

The first Programmer  652

use Interface references to  
Manipulate Data Structures 685

Hash functions  690
reverse Polish Notation  703

Standardization  680

Static classes  730
Open addressing  749

Wildcard Types  830
reflection  834

use a GuI Builder  862 adding the main Method 
to the frame class  846

common 
errors

How Tos 
 and 

Worked examples

14 Sorting and Searching The compareTo Method can 
return any Integer,  
Not Just –1, 0, and 1  660

enhancing the Insertion  
Sort algorithm 

15 The Java collections 
framework

choosing a collection  688
Word frequency 
Simulating a Queue of  

Waiting customers   

16 Basic Data Structures Implementing a Doubly- 
Linked List   

17 Tree Structures Building a Huffman Tree 
Implementing a  

red-Black Tree 

18 Generic classes Genericity and Inheritance  829
The array Store exception  829
using Generic Types in a  

Static context  834

Making a Generic Binary  
Search Tree class 

19 Graphical user  
Interfaces

By Default, components have  
Zero Width and Height  845

Laying Out a user Interface  859
Programming a Working  

calculator 

20 Streams and Binary  
Input/Output

Negative byte Values  887 choosing a file format  896

bj5_fm_05.indd 29 10/18/12 3:25 PM

http://www.wiley.com/college/horstmann

xxx  Special Features

© Steve Simzer/iStockphoto.

CHAPTER

  Available online at www.wiley.com/college/horstmann.

© John Bell/iStockphoto.

Programming 
Tips Special Topics Computing & 

Society

Use the Runnable Interface 
Check for Thread Interruptions in 

the run Method of a Thread 

Thread Pools 
Object Locks and  

Synchronized Methods 
The Java Memory Model 

Use High-Level Libraries 

Stick with the Standard 
Avoid Unnecessary Data  

Replication 
Don’t Replicate Columns  

in a Table 
Don’t Hardwire Database  

Connection Parameters  
into Your Program 

Let the Database Do the Work 

Primary Keys and Indexes 
Transactions 
Object-Relational Mapping 

Prefer XML Elements  
over Attributes 

Avoid Children with Mixed  
Elements and Text 

Grammars, Parsers,  
and Compilers 

Schema Languages 
Other XML Technologies 

Session State and Cookies 
AJAX 

Common 
Errors

How Tos 
 and 

Worked Examples

21	 Multithreading  
(WEB ONLY) 

Calling await Without  
Calling signalAll 

Calling signalAll Without 
Locking the Object 

22	 Internet Networking 
(WEB ONLY) 

Designing Client/Server  
Programs 

23	 Relational Databases 
(WEB ONLY) 

Joining Tables Without Specifying 
a Link Condition 

Constructing Queries from  
Arbitrary Strings 

Programming a  
Bank Database 

24	 XML 
(WEB ONLY) 

XML Elements Describe Objects, 
Not Classes 

Designing an XML  
Document Format 

Writing an XML Document 
Writing a DTD 

25	 Web Applications 
(WEB ONLY) 

Designing a Managed Bean 

bj5_fm_06.indd 30 11/6/12 9:26 PM

http://www.wiley.com/college/horstmann

Special Features  xxxi

  Available online at www.wiley.com/college/horstmann.

© Eric Isselé/iStockphoto.
© Eric Isselé/iStockphoto. Media Bakery.

Programming 
Tips Special Topics Computing & 

Society

Use the Runnable Interface 
Check for Thread Interruptions in 

the run Method of a Thread 

Thread Pools 
Object Locks and  

Synchronized Methods 
The Java Memory Model 

Use High-Level Libraries 

Stick with the Standard 
Avoid Unnecessary Data  

Replication 
Don’t Replicate Columns  

in a Table 
Don’t Hardwire Database  

Connection Parameters  
into Your Program 

Let the Database Do the Work 

Primary Keys and Indexes 
Transactions 
Object-Relational Mapping 

Prefer XML Elements  
over Attributes 

Avoid Children with Mixed  
Elements and Text 

Grammars, Parsers,  
and Compilers 

Schema Languages 
Other XML Technologies 

Session State and Cookies 
AJAX 

Common 
Errors

How Tos 
 and 

Worked Examples

21	 Multithreading  
(WEB ONLY) 

Calling await Without  
Calling signalAll 

Calling signalAll Without 
Locking the Object 

22	 Internet Networking 
(WEB ONLY) 

Designing Client/Server  
Programs 

23	 Relational Databases 
(WEB ONLY) 

Joining Tables Without Specifying 
a Link Condition 

Constructing Queries from  
Arbitrary Strings 

Programming a  
Bank Database 

24	 XML 
(WEB ONLY) 

XML Elements Describe Objects, 
Not Classes 

Designing an XML  
Document Format 

Writing an XML Document 
Writing a DTD 

25	 Web Applications 
(WEB ONLY) 

Designing a Managed Bean 

bj5_fm_06.indd 31 11/6/12 9:26 PM

http://www.wiley.com/college/horstmann

bj5_fm_05.indd 32 10/18/12 3:25 PM

1C h a p t e r

1

IntroduCtIon

to learn about computers
and programming

to compile and run your first Java program

to recognize compile-time and run-time errors

to describe an algorithm with pseudocode

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

1.1  Computer programs  2

1.2  the anatomy of a Computer  3

Computing & Society 1.1: Computers are
everywhere 5

1.3  the Java programming 
Language  6

1.4  BeComing famiLiar with your 
programming environment  8

Programming Tip 1.1: Backup Copies 11

1.5  anaLyzing your 
first program  12

Syntax 1.1: Java program 13
Common Error 1.1: omitting semicolons 14

1.6  errors  15

Common Error 1.2: Misspelling Words 16

1.7  proBLem soLving: 
aLgorithm Design  16

How To 1.1: describing an algorithm with
pseudocode 20

Worked Example 1.1: Writing an algorithm for
tiling a Floor 22

© JanPietruszka/iStockphoto.

bj5_ch01_09.indd 1 10/19/12 2:47 PM

2

Just as you gather tools, study a project, and make a plan for
tackling it, in this chapter you will gather up the basics you
need to start learning to program. after a brief introduction
to computer hardware, software, and programming in
general, you will learn how to write and run your first
Java program. You will also learn how to diagnose and
fix programming errors, and how to use pseudocode to
describe an algorithm—a step-by-step description of how
to solve a problem—as you plan your computer programs.

1.1 Computer programs
You have probably used a computer for work or fun. Many people use computers
for everyday tasks such as electronic banking or writing a term paper. Computers are
good for such tasks. They can handle repetitive chores, such as totaling up numbers
or placing words on a page, without getting bored or exhausted.

The flexibility of a computer is quite an amazing phenomenon. The same machine
can balance your checkbook, lay out your term paper, and play a game. In contrast,
other machines carry out a much nar rower range of tasks; a car drives and a toaster
toasts. Computers can carry out a wide range of tasks because they execute different
programs, each of which directs the computer to work on a specific task.

The computer itself is a machine that stores data (numbers, words, pictures), inter-
acts with devices (the monitor, the sound system, the printer), and executes programs.
A computer program tells a computer, in minute detail, the sequence of steps that are
needed to fulfill a task. The physical computer and periph eral devices are collectively
called the hardware. The programs the computer executes are called the soft ware.

Today’s computer programs are so sophisticated that it is hard to believe that they
are composed of extremely primitive instructions. A typical instruction may be one
of the following:

• Put a red dot at a given screen position.
• Add up two numbers.
• If this value is negative, continue the program at a certain instruction.

The computer user has the illusion of smooth interaction because a program contains
a huge number of such instructions, and because the computer can execute them at
great speed.

The act of designing and implementing computer programs is called program-
ming. In this book, you will learn how to program a computer—that is, how to direct
the computer to execute tasks.

To write a computer game with motion and sound effects or a word processor
that supports fancy fonts and pictures is a complex task that requires a team of many
highly-skilled programmers. Your first programming efforts will be more mundane.
The concepts and skills you learn in this book form an important foundation, and
you should not be disappointed if your first programs do not rival the sophis ticated
software that is familiar to you. Actually, you will find that there is an immense thrill
even in sim ple programming tasks. It is an amazing experience to see the computer
precisely and quickly carry out a task that would take you hours of drudgery, to

Computers
execute very basic
instructions in
rapid succession.

a computer program
is a sequence
of instructions
and decisions.

programming is the
act of designing
and implementing
computer programs.

© JanPietruszka/iStockphoto.

make small changes in a program that lead to immediate improvements, and to see the
computer become an extension of your mental powers.

1.  What is required to play music on a computer?
2.  Why is a CD player less flexible than a computer?
3.  What does a computer user need to know about programming in order to play a

video game?

1.2 the anatomy of a Computer
To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal
computer. Larger computers have faster, larger, or more powerful components, but
they have fundamentally the same design.

At the heart of the computer lies the central
processing unit (CPU) (see Figure 3). The inside
wiring of the CPU is enormously complicated.
For example, the Intel Core processor (a popular
CPU for per sonal computers at the time of this
writing) is composed of several hundred million
structural elements, called transistors.

The CPU performs program control and data
processing. That is, the CPU locates and executes
the program instructions; it carries out arith-
metic operations such as addition, subtraction,
multiplication, and division; it fetches data from
external memory or devices and places processed
data into storage.

There are two kinds of storage. Primary storage
or memory is made from electronic circuits that can store data, provided they are
supplied with electric power. Secondary storage, usually a hard disk (see Figure 2)

© Nicholas Homrich/iStockphoto.

s e L f   C h e C k

figure 1  Central processing unit© Amorphis/iStockphoto.

the central
processing unit (Cpu)
performs program
control and
data processing.

storage devices
include memory and
secondary storage.

figure 2  a hard disk
© PhotoDisc, Inc./Getty Images.

bj5_ch01_08.indd 2 10/3/12 11:12 AM

1.2 the anatomy of a Computer 3

make small changes in a program that lead to immediate improvements, and to see the
computer become an extension of your mental powers.

1.  What is required to play music on a computer?
2.  Why is a CD player less flexible than a computer?
3.  What does a computer user need to know about programming in order to play a

video game?

1.2 the anatomy of a Computer
To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal
computer. Larger computers have faster, larger, or more powerful components, but
they have fundamentally the same design.

At the heart of the computer lies the central
processing unit (CPU) (see Figure 3). The inside
wiring of the CPU is enormously complicated.
For example, the Intel Core processor (a popular
CPU for per sonal computers at the time of this
writing) is composed of several hundred million
structural elements, called transistors.

The CPU performs program control and data
processing. That is, the CPU locates and executes
the program instructions; it carries out arith-
metic operations such as addition, subtraction,
multiplication, and division; it fetches data from
external memory or devices and places processed
data into storage.

There are two kinds of storage. Primary storage
or memory is made from electronic circuits that can store data, provided they are
supplied with electric power. Secondary storage, usually a hard disk (see Figure 2)

© Nicholas Homrich/iStockphoto.

s e L f   C h e C k

figure 1  Central processing unit© Amorphis/iStockphoto.

the central
processing unit (Cpu)
performs program
control and
data processing.

storage devices
include memory and
secondary storage.

figure 2  a hard disk
© PhotoDisc, Inc./Getty Images.

bj5_ch01_08.indd 3 10/3/12 11:12 AM

4 Chapter 1 Introduction

or a solid-state drive, provides

figure 3  schematic design of a personal Computer

Printer

Mouse/Trackpad

Keyboard

Microphone

Ports

CPU

Memory

Disk
controller

Secondary storage

Monitor

Speakers

Internet
Network
controller

slower and less expensive storage that persists without
electricity. A hard disk consists of rotating platters, which are coated with a mag netic
material. A solid-state drive uses electronic components that can retain information
without power, and without moving parts.

To interact with a human user, a computer requires peripheral devices. The com-
puter transmits infor mation (called output) to the user through a display screen,
speakers, and printers. The user can enter information (called input) for the computer
by using a keyboard or a pointing device such as a mouse.

Some computers are self-contained units, whereas others are interconnected
through networks. Through the network cabling, the computer can read data and
programs from central storage locations or send data to other computers. To the user
of a networked computer, it may not even be obvious which data reside on the com-
puter itself and which are transmitted through the network.

Figure 3 gives a schematic overview of the architecture of a personal computer.
Program instructions and data (such as text, numbers, audio, or video) reside in sec-
ondary storage or elsewhere on the network. When a program is started, its instruc-
tions are brought into memory, where the CPU can read them. The CPU reads and
executes one instruction at a time. As directed by these instructions, the CPU reads
data, modifies it, and writes it back to memory or secondary storage. Some program
instruc tions will cause the CPU to place dots on the display screen or printer or to
vibrate the speaker. As these actions happen many times over and at great speed, the
human user will perceive images and sound. Some program instructions read user
input from the keyboard, mouse, touch sensor, or microphone. The program ana-
lyzes the nature of these inputs and then executes the next appropriate instruction.

bj5_ch01_08.indd 4 10/3/12 11:12 AM

1.2  The Anatomy of a Computer   5

4.	 Where is a program stored when it is not currently running?
5.	 Which part of the computer carries out arithmetic operations, such as addition

and multiplication?
6.	 A modern smartphone is a computer, comparable to a desktop computer. Which

components of a smartphone correspond to those shown in Figure 3?

Practice	It	 Now you can try these exercises at the end of the chapter: R1.2, R1.3.
© Nicholas Homrich/iStockphoto.

S e l f 	 C h e C k

When  computers 
were  first  invented 

in  the  1940s,  a  computer  filled  an 
entire  room.  The  photo  below  shows 
the  ENIAC  (electronic  numerical  inte-
grator  and  computer),  completed  in 
1946 at the University of Pennsylvania. 
The  ENIAC  was  used  by  the  military 
to compute  the  trajectories of projec-
tiles.  Nowadays,  computing  facilities 
of search engines, Internet shops, and 
social  networks  fill  huge  buildings 
called data centers. At the other end of 
the spectrum, computers are all around 
us.  Your  cell  phone  has  a  computer 
inside, as do many credit cards and fare 
cards for public transit. A modern car 
has several computers––to control the 
engine, brakes, lights, and the radio. 

© UPPA/Photoshot.

 The ENIAC

© Maurice Savage/Alamy Limited.
This transit card contains a computer.

The advent of ubiqui-
tous computing changed 
many  aspects  of  our 
lives.  Factories  used 
to  employ  people  to 
do  repetitive  assembly 
tasks that are today car-
ried  out  by  computer-
controlled robots, oper-
ated  by  a  few  people 
who know how to work 
with  those  computers. 
Books, music, and mov-
ies nowadays are often 
consumed  on  com-
puters,  and  comput-
ers  are  almost  always 
involved  in  their  production.  The 
book that you are reading right now 

could not have been written without 
computers.

Knowing  about  computers  and 
how  to  program  them  has  become 
an  essential  skill  in  many  careers. 
Engineers design computer-controlled 
cars  and  medical  equipment  that 
preserve  lives.  Computer  scientists 
develop  programs  that  help  people 
come  together  to  support  social 
causes.  For  example,  activists  used 
social  networks  to  share  videos 
showing abuse by repressive regimes, 
and this information was instrumental 
in changing public opinion.

As  computers,  large  and  small, 
become  ever  more  embedded  in  our 
everyday lives, it is increasingly impor-
tant  for everyone  to understand how 
they work, and how to work with them. 
As you use this book to learn how to 
program a computer, you will develop 
a  good  understanding  of  computing 
fundamentals  that  will  make  you  a 
more  informed  citizen  and,  perhaps,  
a computing professional.

Computing & Society 1.1 Computers Are Everywhere

© Media Bakery.

bj5_ch01_09.indd 5 10/19/12 2:50 PM

6 Chapter 1 Introduction

1.3 the Java programming language
In order to write a computer program, you need
to provide a sequence of instructions that the CPU
can execute. A computer program consists of a large
number of simple CPU instructions, and it is tedious
and error-prone to specify them one by one. For that
reason, high-level programming languages have
been created. In a high-level language, you specify
the actions that your program should carry out. A
compiler translates the high-level instructions into
the more detailed instructions (called machine code)
required by the CPU. Many different programming
languages have been designed for different purposes.

In 1991, a group led by James Gosling and Patrick
Naughton at Sun Microsystems designed a program-
ming language, code-named “Green”, for use in con-
sumer devices, such as intelligent television “set-top”
boxes. The language was designed to be simple, secure, and usable for many dif ferent
processor types. No customer was ever found for this technology.

Gosling recounts that in 1994 the team realized, “We could write a really cool
browser. It was one of the few things in the client/server main stream that needed
some of the weird things we’d done: architecture neu tral, real-time, reliable, secure.”
Java was introduced to an enthusiastic crowd at the SunWorld exhibition in 1995,
together with a browser that ran applets—Java code that can be located anywhere on
the Internet. Figure 4 shows a typical example of an applet.

© James Sullivan/Getty Images.

James Gosling
Java was originally
designed for
programming
consumer devices,
but it was first
successfully used
to write Internet
applets.

figure 4  an applet for Visualizing Molecules running in a
Browser Window (http://jmol.sourceforge.net/)

table 1 Java Versions

Version Year Important new Features

1.0 1996

1.1 1997 Inner classes

1.2 1998 Swing, Collections framework

1.3 2000 Performance enhancements

1.4 2002 Assertions, XML support

5 2004 Generic classes, enhanced for loop, auto-boxing, enumerations, annotations

6 2006 Library improvements

7 2011 Small language changes and library improvements

Since then, Java has grown at a phenomenal rate. Programmers have embraced the
language because it is easier to use than its closest rival, C++. In addition, Java has a
rich library that makes it possible to write portable programs that can bypass pro-
prietary operating systems—a feature that was eagerly sought by those who wanted
to be independent of those proprietary systems and was bitterly fought by their ven-
dors. A “micro edition” and an “enterprise edition” of the Java library allow Java
programmers to target hardware ranging from smart cards and cell phones to the
largest Internet servers.

Because Java was designed for the Internet, it has two attributes that make it very
suitable for begin ners: safety and portability.

You can run a Java program in your browser without fear. The safety features
of the Java language ensure that a program is terminated if it tries to do something
unsafe. Having a safe environment is also helpful for anyone learning Java. When you
make an error that results in unsafe behavior, your program is terminated and you
receive an accurate error report.

The other benefit of Java is portability. The same Java program will run, without
change, on Windows, UNIX, Linux, or Macintosh. In order to achieve portability,
the Java compiler does not translate Java programs directly into CPU instructions.
Instead, compiled Java programs contain instructions for the Java virtual machine,
a program that simulates a real CPU. Portability is another benefit for the begin ning
student. You do not have to learn how to write programs for different platforms.

At this time, Java is firmly established as one of the most important languages for
general-purpose pro gramming as well as for computer science instruction. However,
although Java is a good language for beginners, it is not perfect, for three reasons.

Because Java was not specifically designed for students, no thought was given to
making it really sim ple to write basic programs. A certain amount of technical machin-
ery is necessary to write even the simplest programs. This is not a problem for pro-
fessional programmers, but it can be a nuisance for beginning students. As you learn
how to program in Java, there will be times when you will be asked to be satisfied with
a preliminary explanation and wait for more complete detail in a later chapter.

Java has been extended many times during its life—see Table 1. In this book, we
assume that you have Java version 5 or later.

Java was designed to
be safe and portable,
benefiting both
Internet users
and students.

Java programs
are distributed as
instructions for a
virtual machine,
making them
platform-independent.

bj5_ch01_08.indd 6 10/3/12 11:12 AM

http://jmol.sourceforge.net/

1.3 the Java programming language 7

table 1 Java Versions

Version Year Important new Features

1.0 1996

1.1 1997 Inner classes

1.2 1998 Swing, Collections framework

1.3 2000 Performance enhancements

1.4 2002 Assertions, XML support

5 2004 Generic classes, enhanced for loop, auto-boxing, enumerations, annotations

6 2006 Library improvements

7 2011 Small language changes and library improvements

Since then, Java has grown at a phenomenal rate. Programmers have embraced the
language because it is easier to use than its closest rival, C++. In addition, Java has a
rich library that makes it possible to write portable programs that can bypass pro-
prietary operating systems—a feature that was eagerly sought by those who wanted
to be independent of those proprietary systems and was bitterly fought by their ven-
dors. A “micro edition” and an “enterprise edition” of the Java library allow Java
programmers to target hardware ranging from smart cards and cell phones to the
largest Internet servers.

Because Java was designed for the Internet, it has two attributes that make it very
suitable for begin ners: safety and portability.

You can run a Java program in your browser without fear. The safety features
of the Java language ensure that a program is terminated if it tries to do something
unsafe. Having a safe environment is also helpful for anyone learning Java. When you
make an error that results in unsafe behavior, your program is terminated and you
receive an accurate error report.

The other benefit of Java is portability. The same Java program will run, without
change, on Windows, UNIX, Linux, or Macintosh. In order to achieve portability,
the Java compiler does not translate Java programs directly into CPU instructions.
Instead, compiled Java programs contain instructions for the Java virtual machine,
a program that simulates a real CPU. Portability is another benefit for the begin ning
student. You do not have to learn how to write programs for different platforms.

At this time, Java is firmly established as one of the most important languages for
general-purpose pro gramming as well as for computer science instruction. However,
although Java is a good language for beginners, it is not perfect, for three reasons.

Because Java was not specifically designed for students, no thought was given to
making it really sim ple to write basic programs. A certain amount of technical machin-
ery is necessary to write even the simplest programs. This is not a problem for pro-
fessional programmers, but it can be a nuisance for beginning students. As you learn
how to program in Java, there will be times when you will be asked to be satisfied with
a preliminary explanation and wait for more complete detail in a later chapter.

Java has been extended many times during its life—see Table 1. In this book, we
assume that you have Java version 5 or later.

Java was designed to
be safe and portable,
benefiting both
Internet users
and students.

Java programs
are distributed as
instructions for a
virtual machine,
making them
platform-independent.

bj5_ch01_08.indd 7 10/3/12 11:12 AM

8 Chapter 1 Introduction

Finally, you cannot hope to learn all of Java in one course. The Java language itself
is relatively simple, but Java contains a vast set of library packages that are required
to write useful programs. There are pack ages for graphics, user-interface design,
cryptography, networking, sound, database storage, and many other purposes. Even
expert Java programmers cannot hope to know the contents of all of the packages—
they just use those that they need for particular projects.

Using this book, you should expect to learn a good deal about the Java language
and about the most important packages. Keep in mind that the central goal of this
book is not to make you memorize Java minutiae, but to teach you how to think
about programming.

7.  What are the two most important benefits of the Java language?
8.  How long does it take to learn the entire Java library?

practice it  Now you can try this exercise at the end of the chapter: R1.5.

1.4 Becoming Familiar with Your
programming environment

Many students find that the tools they need as programmers are very different from
the software with which they are familiar. You should spend some time making your-
self familiar with your programming environment. Because computer systems vary
widely, this book can only give an outline of the steps you need to follow. It is a good
idea to participate in a hands-on lab, or to ask a knowledgeable friend to give you a
tour.

step 1 Start the Java development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
grated development environment in which you can write and test your programs.
On other computers you first launch an editor, a program that functions like a word
processor, in which you can enter your Java instructions; you then open a console
window and type commands to execute your program. You need to find out how to
get started with your environment.

step 2 Write a simple program.

The traditional choice for the very first program in a new programming language is
a program that dis plays a simple greeting: “Hello, World!”. Let us follow that tradi-
tion. Here is the “Hello, World!” pro gram in Java:

public class HelloPrinter
{
 public static void main(String[] args)
 {
 System.out.println("Hello, World!");
 }
}

We will examine this program in the next section.

Java has a very
large library. Focus
on learning those
parts of the library
that you need for
your programming
projects.

© Nicholas Homrich/iStockphoto.

s e L f   C h e C k

set aside some
time to become
familiar with the
programming
environment that
you will use for your
class work.

an editor is a
program for entering
and modifying
text, such as a Java
program.

No matter which programming environment you use, you begin your activity by
typing the program statements into an editor window.

Create a new file and call it HelloPrinter.java, using the steps that are appropriate
for your environ ment. (If your environment requires that you supply a project name
in addition to the file name, use the name hello for the project.) Enter the program
instructions exactly as they are given above. Alternatively, locate the electronic copy
in this book’s companion code and paste it into your editor.

As you write this program, pay careful attention to the various symbols, and
keep in mind that Java is case sensitive. You must enter upper- and lowercase letters
exactly as they appear in the program listing. You cannot type MAIN or PrintLn. If you
are not careful, you will run into problems—see Common Error 1.2 on page 16.

step 3 Run the program.

The process for running a program depends greatly on your programming environ-
ment. You may have to click a button or enter some commands. When you run the
test program, the message

Hello, World!

will appear somewhere on the screen (see Figures 5 and 6).

Java is case sensitive.
You must be careful
about distinguishing
between upper- and
lowercase letters.

figure 6 
running the HelloPrinter
program in a Console Window

bj5_ch01_08.indd 8 10/3/12 11:12 AM

1.4 Becoming Familiar with Your programming environment 9

figure 5 
running the
HelloPrinter
program in an
Integrated
development
environment

Java program

Program output

Click to compile and run

No matter which programming environment you use, you begin your activity by
typing the program statements into an editor window.

Create a new file and call it HelloPrinter.java, using the steps that are appropriate
for your environ ment. (If your environment requires that you supply a project name
in addition to the file name, use the name hello for the project.) Enter the program
instructions exactly as they are given above. Alternatively, locate the electronic copy
in this book’s companion code and paste it into your editor.

As you write this program, pay careful attention to the various symbols, and
keep in mind that Java is case sensitive. You must enter upper- and lowercase letters
exactly as they appear in the program listing. You cannot type MAIN or PrintLn. If you
are not careful, you will run into problems—see Common Error 1.2 on page 16.

step 3 Run the program.

The process for running a program depends greatly on your programming environ-
ment. You may have to click a button or enter some commands. When you run the
test program, the message

Hello, World!

will appear somewhere on the screen (see Figures 5 and 6).

Java is case sensitive.
You must be careful
about distinguishing
between upper- and
lowercase letters.

figure 6 
running the HelloPrinter
program in a Console Window

bj5_ch01_08.indd 9 10/3/12 11:12 AM

